Abstract
AbstractLet $${{\mathbb {Z}}}_{n}$$Zn be the additive group of residue classes modulo n. Let $$c(n_1,n_2,n_3)$$c(n1,n2,n3) denote the number of cyclic subgroups of the group $${{\mathbb {Z}}}_{n_1}\times {{\mathbb {Z}}}_{n_2}\times {{\mathbb {Z}}}_{n_3}$$Zn1×Zn2×Zn3, where $$n_1, n_2$$n1,n2 and $$n_3$$n3 are arbitrary positive integers. In this paper we obtain an asymptotic formula for the sum $$\sum _{n_1,n_2,n_3\le _x} c(n_1,n_2,n_3).$$∑n1,n2,n3≤xc(n1,n2,n3).
Funder
National Basic Research Program of China
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference14 articles.
1. Bhowmik, G., Wu, J.: Zeta function of subgroups of abelian groups and average orders. J. Reine Angew. Math. 530, 1–15 (2001)
2. Călugăreanu, G.: The total number of subgroups of a finite abelian group. Sci. Math. Jpn. 60, 157–167 (2004)
3. Chinta, G., Kaplan, N., Koplewitz, S.: The cotype zeta function of $${\mathbb{Z}}^d$$, Preprint (2017), arXiv:1708.08547 [math.NT]
4. Hampejs, M., Holighaus, N., Tóth, L., Wiesmeyr, C.: Representing and counting the subgroups of the group $${\mathbb{Z}}_m \times {\mathbb{Z}}_n$$, J. Numbers, Article ID 491428 (2014)
5. Theory and Applications;A Ivić,1985
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献