Abstract
AbstractIn previous work, the authors defined a category $$\text {SMod}_F$$
SMod
F
of finite Galois modules decorated with local conditions for each global field F. In this paper, given an extension K/F of global fields, we define a restriction of scalars functor from $$\text {SMod}_K$$
SMod
K
to $$\text {SMod}_F$$
SMod
F
and show that it behaves well with respect to the Cassels–Tate pairing. We apply this work to study the class groups of global fields in the context of the Cohen–Lenstra heuristics.
Funder
Engineering and Physical Sciences Research Council
Clay Mathematics Institute
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Balmer, P.: Witt Groups, Handbook of $$K$$-Theory, vol. 1–2, pp. 539–576. Springer, Berlin (2005)
2. Česnavičius, K.: The $$\ell $$-parity conjecture over the constant quadratic extension. Math. Proc. Camb. Philos. Soc. 165(3), 385–409 (2018)
3. Chung, H.-J., Kim, D., Kim, M., Park, J., Yoo, H.: Arithmetic Chern–Simons Theory II, p-adic Hodge Theory. Springer, Appendix 2 by Behrang Noohi, pp. 81–128 (2020)
4. Cohen, H., Lenstra, H.W., Jr.: Heuristics on class groups of number fields, Number theory, Noordwijkerhout. Lecture Notes in Math., vol. 1068. Springer, Berlin, pp. 33–62 (1983)
5. Cohen, H.: Advanced Topics in Computational Number Theory, Graduate Texts in Mathematics, vol. 193. Springer, New York (2000)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献