Abstract
AbstractWe develop the L-functions ratios conjecture with one shift in the numerator and denominator in certain ranges for the family of quadratic twist of modular L-functions using multiple Dirichlet series under the generalized Riemann hypothesis.
Funder
University of New South Wales
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Farmer, D.W.: Long mollifiers of the Riemann zeta-function. Mathematika 40(1), 71–87 (1993)
2. Conrey, J.B., Farmer, D.W., Zirnbauer, M.R.: Autocorrelation of ratios of $$L$$-functions. Commun. Number Theory Phys. 2(3), 593–636 (2008)
3. Bui, H.M., Florea, A., Keating, J.P.: The ratios conjecture and upper bounds for negative moments of $$L$$-functions over function fields. Trans. Amer. Math. Soc. 376(6), 4453–4510 (2023)
4. Čech, M.: The Ratios conjecture for real Dirichlet characters and multiple Dirichlet series. Trans. Amer. Math. Soc. 377, 3487–3528 (2024)
5. Gao, P., Zhao, L.: Ratios conjecture for quadratic Hecke $$L$$-functions in the Gaussian field. Monatsh. Math. 203(1), 63–90 (2024)