Torsion phenomena for zero-cycles on a product of curves over a number field

Author:

Gazaki EvangeliaORCID,Love Jonathan

Abstract

AbstractFor a smooth projective variety X over an algebraic number field k a conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map of X is a torsion group. In this article we consider a product $$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true for X. For a product $$X=C_1\times C_2$$ X = C 1 × C 2 of two curves over $$\mathbb {Q} $$ Q with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map $$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ J 1 ( Q ) J 2 ( Q ) ε CH 0 ( C 1 × C 2 ) is finite, where $$J_i$$ J i is the Jacobian variety of $$C_i$$ C i . Our constructions include many new examples of non-isogenous pairs of elliptic curves $$E_1, E_2$$ E 1 , E 2 with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products $$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d for which the analogous map $$\varepsilon $$ ε has finite image.

Funder

Directorate for Mathematical and Physical Sciences

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3