Log-concavity in powers of infinite series close to $$(1 - z)^{-1}$$

Author:

Zhang Shengtong

Abstract

AbstractIn this paper, we use the analytic method of Odlyzko and Richmond to study the log-concavity of power series. If $$f(z) = \sum _n a_nz^n$$ f ( z ) = n a n z n is an infinite series with $$a_n \ge 1$$ a n 1 and $$a_0 + \cdots + a_n = O(n + 1)$$ a 0 + + a n = O ( n + 1 ) for all n, we prove that a super-polynomially long initial segment of $$f^k(z)$$ f k ( z ) is log-concave. Furthermore, if there exists constants $$C > 1$$ C > 1 and $$\alpha < 1$$ α < 1 such that $$a_0 + \cdots + a_n = C(n + 1) - R_n$$ a 0 + + a n = C ( n + 1 ) - R n where $$0 \le R_n \le O((n + 1)^{\alpha })$$ 0 R n O ( ( n + 1 ) α ) , we show that an exponentially long initial segment of $$f^k(z)$$ f k ( z ) is log-concave. This resolves a conjecture proposed by Letong Hong and the author, which implies another conjecture of Heim and Neuhauser that the Nekrasov-Okounkov polynomials $$Q_n(z)$$ Q n ( z ) are unimodal for sufficiently large n.

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bounded power series on the real line;Journal of Mathematical Analysis and Applications;2024-10

2. A bijection for tuples of commuting permutations and a log-concavity conjecture;Research in Number Theory;2024-04-17

3. Zeros transfer for recursively defined polynomials;Research in Number Theory;2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3