Abstract
AbstractWe study generating functions of certain shapes of planar polygons arising from homological mirror symmetry of elliptic curves. We express these generating functions in terms of rational functions of the Jacobi theta function and Zwegers’ mock theta function and determine their (mock) Jacobi properties. We also analyze their special values and singularities, which are of geometric interest as well.
Funder
Deutsche Forschungsgemeinschaft
Alfried Krupp von Bohlen und Halbach-Stiftung
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference17 articles.
1. Bringmann, K., Richter, O.: Zagier-type dualities and lifting maps for harmonic Maass? Jacobi forms. Adv. Math. 225, 2298–2315 (2010)
2. Bringmann, K., Rolen, L., Zwegers, S.: On the modularity of certain functions from Gromov—Witten theory of elliptic orbifolds. R. Soc. Open Sci. 2, 150310 (2015)
3. Bringmann, K., Kaszian, J., Rolen, L.: Indefinite theta functions arising in Gromov–Witten Theory of elliptic orbifolds. Camb. J. Math. 6, 25–57 (2018)
4. Brunner, I., Herbst, M., Lerche, W., Walcher, J.: Matrix factorizations and mirror symmetry: the cubic curve. J. High Energy Phys. 11, 006 (2006)
5. Cho, C., Hong, H., Kim, S., Lau, S.: Lagrangian Floer potential of orbifold spheres, preprint. arXiv:1403.0990
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献