Abstract
AbstractWe postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic conformal field theory, that is, a vertex operator algebra in which a p-adic Banach space replaces the traditional Hilbert space. We study some consequences of our axioms leading to the construction of various examples, including p-adic commutative Banach rings and p-adic versions of the Virasoro, Heisenberg, and the Moonshine module vertex operator algebras. Serre p-adic modular forms occur naturally in some of these examples as limits of classical 1-point functions.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference46 articles.
1. Borcherds, R.E.: Modular moonshine. III. Duke Math. J. 93(1), 129–154 (1998)
2. Borcherds, R.E., Ryba, A.J.E.: Modular Moonshine II. Duke Math. J. 83(2), 435–459 (1996)
3. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis, vol. 261 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. A Systematic Approach to Rigid Analytic Geometry. Springer, Berlin (1984)
4. Carnahan, S.: A self-dual integral form of the moonshine module. SIGMA Symmetry Integr. Geom. Methods Appl. 15(36), 030 (2019)
5. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: $$\mathbb{ATLAS} $$ of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. With Computational Assistance from J. G. Thackray. Oxford University Press, Eynsham (1985)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献