Abstract
AbstractFollowing Bright and Newton, we construct an explicit K3 surface over the rational numbers having good reduction at 2, and for which 2 is the only prime at which weak approximation is obstructed.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference19 articles.
1. Berg, J., Várilly-Alvarado, A.: Odd order obstructions to the Hasse principle on general K3 surfaces. Math. Comp. 89(323), 1395–1416 (2020)
2. Bloch, S., Kato, K.: $$p$$-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math. 63, 107–152 (1986)
3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. volume 24, pages 235–265. 1997. Computational algebra and number theory (London, 1993)
4. Bright, M., Newton, R.: Evaluating the wild brauer group, (2020)
5. Colliot-Thélène, J.-L., Skorobogatov, A.N.: The Brauer-Grothendieck group. https://www.imo.universite-paris-saclay.fr/~colliot/BGgroup_book.pdf
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献