Abstract
AbstractHermite–Korkin–Zolotarev (HKZ) reduction is an important notion of lattice reduction which plays a significant role in number theory (particularly the geometry of numbers), and more recently in coding theory and post-quantum cryptography. In this work, we determine a sharp upper bound on the orthogonality defect of HKZ reduced bases up to dimension 3. Using this result, we determine a general upper bound for the orthogonality defect of HKZ reduced bases of arbitrary rank. This upper bound is sharper than existing bounds in literature, such as the one determined by Lagarias, Lenstra and Schnorr [3].
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Reference11 articles.
1. Hermite, C.: Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. Journal für die reine und angewandte Mathematik (Crelles Journal) 1850(40), 261–278 (1850)
2. Korkine, A., Zolotareff, G.: Sur les formes quadratiques. Mathematische Annalen 6, 366–389 (1873)
3. Lagarias, J.C., Lenstra, H.W., Schnorr, C.P.: Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10, 333–348 (1990)
4. Minkowski, H.: Geometrie der Zahlen. B.G. Teubner Verlag, Leipzig-Berlin (1910)
5. Zhang, W., Qiao, S., Wei, Y.: HKZ and Minkowski reduction algorithms for lattice-reduction-aided MIMO detection. IEEE Trans. Sig. Process. 60(11), 5963–5976 (2012)