Abstract
AbstractBell’s theorem cannot be proved if complementary measurements have to be represented by random variables which cannot be added or multiplied. One such case occurs if their domains are not identical. The case more directly related to the Einstein–Rosen–Podolsky argument occurs if there exists an ‘element of reality’ but nevertheless addition of complementary results is impossible because they are represented by elements from different arithmetics. A naive mixing of arithmetics leads to contradictions at a much more elementary level than the Clauser–Horne–Shimony–Holt inequality.
Publisher
Springer Science and Business Media LLC
Subject
History and Philosophy of Science,Multidisciplinary
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献