Hydrogen charging of carbon and low alloy steel by electrochemical methods

Author:

Bolzoni Fabio,Paterlini Luca,Casanova Luca,Ormellese Marco

Abstract

AbstractAtomic hydrogen can be the result of different processes like electroplating, chemical and electrochemical pickling treatments, in welding or by cathodic processes in corrosive fluids. Moreover, adsorption of atomic hydrogen can affect materials in contact with high pressure gaseous hydrogen. Once entered the material, atomic hydrogen interacts with the metal structure and may produce a “damage” of various forms, such as Hydrogen Induced Cracking (HIC), delayed fracture, blistering and hydrogen embrittlement. In particular, when H2S is present (“sour service”), metallic materials, such as carbon and low alloy steels, may suffer hydrogen damage and hydrogen embrittlement. Sour service materials must be used in compliance with international accepted standards, used worldwide in oil and gas activities, when fluids are classified as sour. The present study has been carried out in order to set up an electrochemical method to charge with hydrogen two typical pipeline materials, carbon and low alloy steels. The reason of the use of an electrochemical method is to avoid any critical conditions from the point of view of preparation, safety and disposal. Hydrogen content in the specimens was measured by two different methods: hot glycerol bath and Inert Gas Fusion (IGF) analysis. Hydrogen content in the specimens is about 0.6–2 ppm; mechanical performances were assessed by means of J integral tests: a pronounced decrease of fracture toughness was observed for H charged specimens. Graphical Abstract

Funder

Eni

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Electrochemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3