Capacity balancing for vanadium redox flow batteries through continuous and dynamic electrolyte overflow

Author:

Schafner KatharinaORCID,Becker MaikORCID,Turek ThomasORCID

Abstract

Abstract The vanadium crossover through the membrane can have a significant impact on the capacity of the vanadium redox flow battery (VFB) over long-term charge–discharge cycling. The different vanadium ions move unsymmetrically through the membrane and this leads to a build-up of vanadium ions in one half-cell with a corresponding decrease in the other. In this paper, a dynamic model is developed based on different crossover mechanisms (diffusion, migration and electro osmosis) for each of the four vanadium ions, water and protons in the electrolytes. With a simple to use approach, basic mass transport theory is used to simulate the transfer of vanadium ions in the battery. The model is validated with own measurements and can therefore predict the battery capacity as a function of time. This is used to analyse the battery performance by applying an overflow from one half-cell to the other. Different constant overflow rates were analysed with regard to an impact of the performance and electrolyte stability. It was observed that a continuous overflow increases the capacity significantly but that the electrolyte stability plays an essential role using a membrane with a big vanadium crossover. Even with a good performance, a complete remixing of the tanks is necessary to prevent electrolyte precipitations. Therefore, a dynamic overflow was determined in such a way that the capacity of the battery is maximised while the electrolytes remain stable for 200 cycles. Graphic abstract

Funder

thyssenkrupp Industrial Solutions

Technische Universität Clausthal

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Electrochemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3