Electrochemical investigation of ion-beam sputter-deposited carbon thin films for Li-ion batteries

Author:

Hüger ErwinORCID,Jin Chao,Schmidt Harald

Abstract

Abstract The C-rate capability of 230 nm- and 16 nm-thin ion-beam sputter-deposited amorphous carbon films, an interesting class of carbonaceous material for lithium-ion batteries, was investigated up to Li-platting. Stepwise ascending and descending constant Li+ currents after each fifth cycle, followed by hundreds of cycles with the highest current were applied. The carbon films show similar cycling with irreversible losses during the first five cycles, followed by reversible cycling with a capacity close to that of graphite. The capacity is significantly lower at high currents; however, it is restored for subsequent cycling again at low currents. Differential charge and differential capacity curves reveal three Li+ uptake and three Li+ release peaks located between 0 and 3 V. Irreversible as well as reversible Li bonding can be associated with all these peaks. Irreversibly bonded Li can be found at the surface (solid electrolyte interphase) and in the bulk of the carbon films (Li trapping). Reversible Li bonding might be possible inside the carbon films in graphite-like nano-domains and at defects. The thinner film reveals a more pseudo-capacitive cycling behavior, pointing to enhanced Li kinetics. Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Clausthal

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Electrochemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3