Abstract
Abstract
In the present study, we demonstrate co-deposition of titanium and vanadium from a eutectic LiCl–KCl electrolyte enriched with VCl3 and TiCl2 at 700 K. While the addition of metallic titanium to the electrolyte caused vanadium depletion by a displacement reaction, metallic vanadium addition created and stabilized divalent vanadium ions in the melt, which are supposed to positively affect the deposition process. Various electrochemical experiments were carried out with different electrolyte concentrations, and a relationship between applied potential, electrolyte concentration and composition of the deposit was established. The composition and the morphology of the obtained deposits were strongly affected by the electrolysis conditions. Electrodeposited vanadium-rich Ti–V alloys were found to grow as dendrites, whereas the titanium-rich alloys exhibited a dense cauliflower-like surface morphology. In contrast to deposits of the single elements, which are composed of comparably large faceted crystals, the Ti–V alloys obtained in this study were very fine grained, especially those with vanadium contents around 10–15 at%. Transmission electron microscopy revealed that, depending on the composition of the deposit, either a biphasic α + β microstructure in the case of low vanadium contents or β-(V,Ti) with small amounts of ω phase for high vanadium contents were found.
Graphic abstract
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Electrochemistry,General Chemical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献