Evolution and stability of 2-mercaptobenzimidazole inhibitor film upon Al alloy 6061

Author:

Jakeria Mohd Rafiuddin,Toh Rou Jun,Chen Xiao-Bo,Cole Ivan S.ORCID

Abstract

AbstractOrganic corrosion inhibitors have become competent alternatives to hazardous chrome conversion coatings due to their rapid adsorption over metal surfaces in corrosive environments. Literature suggests a wide range of organic corrosion inhibitors with high inhibition efficiency, barrier properties, and adsorption mechanisms. However, the long-term durability and protectiveness of an organic inhibitor film need to be understood with in-depth insights on its interaction with heterogenous alloy surfaces like AA6xxx, reduction of galvanic activities and time-resolved degradation due to ionic diffusion. The present article is focused on the time-resolved adsorption and degradation of 2-mercaptobenzimidazole (2-MBI)-induced inhibitor layer/film over AA6061 in 0.1 M NaCl solution. Electrochemical and surface analysis data indicate that the presence of 2-MBI drives the rapid formation of a 20–30 nm thick protective film comprised of constitutional elements of C, S, and N from 2-MBI upon the surface of AA6061 substrate. This film mitigated the corrosion cells associated with nano- and micro-sized Fe and Si-rich intermetallic particles (IMPs) in AA6061. XPS reveals two distinguished bonding states of S and N in the inhibitor film and chemical interactions between 2-MBI and the surface of AA6061. The protective film maintained 65% inhibiting efficiency after 1 day, which progressively degraded due to electrolyte ingress and eventually with a drop in inhibition efficiency down to 21% after 14 days. Inhibitor-induced film over AA6061 reduced the corrosion susceptibility of Fe, and Si-rich IMPs up to 1 day given the subsequent adsorption by S and N heteroatoms. However, this film became thick and defective after 1 day, which undermined its barrier properties against ingress of aggressive ions and facilitated water adsorption. Graphical abstract

Funder

College of Science, Engineering and Health, Royal Melbourne Institute of Technology

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Electrochemistry,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3