Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles

Author:

Altundag-Erdogan Ozlem,Tutar Rumeysa,Yüce Elif,Çelebi-Saltik BetülORCID

Abstract

Abstract Background Cancer stem cells (CSCs) are a subpopulation of cancer cells that are believed to be responsible for tumor initiation, progression, metastasis, and resistance to conventional therapies. Oleuropein as a natural compound found in olive leaves and olive oil, has potential therapeutic effects in cancer treatment, particularly in targeting CSCs. It induces apoptosis in CSCs while sparing normal cells, inhibit proliferation, migration, and invasion, and suppress the self-renewal ability of CSCs. Additionally, oleuropein has shown synergistic effects with conventional chemotherapy drugs, enhancing their efficacy against CSCs. Objectives This study aims to selectively target therapeutically resistant cancer stem cells (CSCs) within a heterogeneous tumor population by utilizing oleuropein (OLE) encapsulated in methacrylated alginate (OLE-mALG) within an in vivo-like microenvironment. Purpose This study aims to target therapeutically resistant cancer stem cells (CSCs) with oleuropein (OLE) encapsulated in the methacrylated alginate (OLE-mALG) in a heterogeneous tumor population with an in vivo-like microenvironment. Methods Co-culture of CSCs with non-tumorogenic MCF-12 A cells was performed, the 3D breast cancer model was supported with methocel/matrigel/collagen-I, and vascularization was ensured with human umbilical vein endothelial cells (HUVEC). Then, OLE-loaded methacrylated alginate microparticles (mALG) were formed by dual crosslinking in the presence of both ionic and visible light obtained with a droplet based microfluidic system. The characterization and effectiveness of the produced OLE-mALG were evaluated by the FTIR, swelling/degradation/release analysis. Before producing OLE loaded mALG microparticles, a preliminary study was carried out to determine the effective dose of OLE for cells and the duration of OLE action on MCF-7, CSCs and MCF-12 A. Subsequently, CSC viability (WST-1), apoptosis (Bcl-2, Bax, caspase-3, caspase-9), stemness (OCT3/4, NANOG, SOX2), EMT profile (E-cadherin, Vimentin, Slug) and proliferation (SURVIVIN, p21, CYCLIN D1) after OLE-mALG treatment were all evaluated in the 3D model. Results OLE was encapsulated in mALG with an efficiency of 90.49% and released 73% within 7 h. OLE-mALG induced apoptosis through the decrease in anti-apoptotic Bcl-2 and an increase in pro-apoptotic Bax, caspase-3, and caspase-9 protein levels. While Vimentin and Slug protein levels decreased after 200 µg/mL OLE-mALG treatment to 3D breast cancer culture, E-cadherin levels increased. OLE-mALG treatment to CSC co-culture led to a decrease in proliferation by triggering p21/SURVIVIN expressions, and also resulted in an increase in stemness genes (OCT3/4/NANOG/SOX2). Conclusion 200 µg/mL OLE-loaded mALG microparticles suppressed epithelial-to-mesenchymal transition by suppressing Vimentin and Slug protein levels, and increased E-cadherin levels in the 3D breast cancer model we created with CSCs, MCF-12 A and HUVECs. This complex system may allow the use of personalized cells for rapid drug screening in preclinical studies compared to animal experiments. OLE-mALG showed apoptotic and metastasis suppressive properties in cancer cells and it was concluded that it can be used in combination with or alternatively with chemotherapeutic agents to target breast cancer stem cells. Graphical abstract

Funder

Hacettepe Üniversitesi

Hacettepe University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3