Photocatalytic activity of silica and silica-silver nanocolloids based on photo-induced formation of reactive oxygen species

Author:

Romolini G.,Gambucci M.,Ricciarelli D.,Tarpani L.,Zampini G.,Latterini L.ORCID

Abstract

AbstractSemiconductor nanomaterials are often proposed as photocatalysts for wastewater treatment; silica nanomaterials are still largely unexploited because their photocatalytic performances need improvements, especially under visible light. The present study is a proof-of-concept that amorphous silica colloids once submitted to the proper surface modifications change into an efficient photocatalyst even under low-energy illumination source. For this reason, silica-based colloidal nanomaterials, such as bare (SiO2 NPs), aminated (NH2-SiO2 NPs), and Ag NPs-decorated (Ag-SiO2 NPs) silica, are tested as photocatalysts for the degradation of 9-anthracenecarboxylic acid (9ACA), taken as a model aromatic compound. Interestingly, upon irradiation at 313 nm, NH2-SiO2 NPs induce 9ACA degradation, and the effect is even improved when Ag-SiO2 NPs are used. On the other hand, irradiation at 405 nm activates the plasmon of Ag-SiO2 NPs photocatalyst, providing a faster and more efficient photodegradation. The photodegradation experiments are also performed under white light illumination, employing a low-intensity fluorescent lamp, confirming satisfying efficiencies. The catalytic effect of SiO2-based nanoparticles is thought to originate from photo-excitable surface defects and Ag NP plasmons since the catalytic degradation takes place only when the 9ACA is adsorbed on the surface. In addition, the involvement of reactive oxygen species was demonstrated through a scavenger use, obtaining a yield of 17%. In conclusion, this work shows the applicability of silica-based nanoparticles as photocatalysts through the involvement of silica surface defects, confirming that the silica colloids can act as photocatalysts under irradiation with monochromatic and white light. Graphic abstract Silica and Ag-decorated silica colloids photosensitize the formation of Reactive Oxygen Species with 17% efficiencies. ROS are able to oxidase aromatic pollutants chemi-adsorbed on the surface of the colloids. Silica-silver nanocomposites present a photocatalytic activity useful to degrade aromatic compounds.

Funder

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3