Abstract
Abstract
Photoinduced symmetry-breaking charge separation (SB-CS) results in the generation of charge carriers through electron transfer between two identical molecules, after photoexcitation of one of them. It is usually studied in systems where the two reacting moieties are covalently linked. Examples of photoinduced bimolecular SB-CS with organic molecules yielding free ions remain scarce due to solubility or aggregation issues at the high concentrations needed to study this diffusion-assisted process. Here we investigate the excited-state dynamics of perylene (Pe) at high concentrations in solvents of varying polarity. Transient absorption spectroscopy on the subnanosecond to microsecond timescales reveal that self-quenching of Pe in the lowest singlet excited state leads to excimer formation in all solvents used. Additionally, bimolecular SB-CS, resulting in the generation of free ions, occurs concurrently to excimer formation in polar media, with a relative efficiency that increases with the polarity of the solvent. Moreover, we show that SB-CS is most efficient in room-temperature ionic liquids due to a charge-shielding effect leading to a larger escape of ions and due to the high viscosity that disfavours excimer formation.
Graphical abstract
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
University of Geneva
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献