Spectra and photorelaxation of tris-biphenyl-triazine-type UV absorbers: from monomers to nanoparticles

Author:

Naumov Sergej,Herzog Bernd,Abel BerndORCID

Abstract

AbstractWater-insoluble organic UV filters like tris-biphenyl-triazine (TBPT) can be prepared as aqueous dispersions of nanoparticles. The particles consist of the respective UV absorber molecules and show strong UV absorbance. Since there is a certain solubility of such UV absorbers in organic solvents, it is possible to measure the absorbance spectrum also in solution, for instance in ethanol or dioxane. The UV spectrum of the aqueous dispersion shows a slight hypsochromic shift of the original band with an additional shoulder at longer wavelengths. For the understanding of the observed changes of UV–Vis spectra of this UV absorber, either dissolved in an organic solvent or dispersed as nanoparticles in water, DFT calculations were carried out with the respective monomer and aggregates of TBPT molecules in the different media. The calculated UV–Vis spectra of isolated, that means dissolved, TBPT molecules in ethanol and in dioxane agree well with experimentally observed ones. The observed changes in the shape of experimental UV–Vis spectra in aqueous dispersion cannot be explained with a solvent effect only. It was found that the studied molecules could form stable energetically favorable π-stacked aggregates, which show UV–Vis spectra in reasonable agreement with those experimentally observed in aqueous dispersion. Such aggregates of TBPT are most likely the reason for the observed additional shoulder in the UV/vis absorbance spectrum. In addition, the mechanism of the photochemical deactivation of excited TBPT molecules was studied in detail with TD DFT in dioxane and in water. Graphical abstract

Funder

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3