3D printed, plastic photocatalytic flow reactors for water purification

Author:

Zhou Ruicheng,Han Ri,Bingham Michael,O’Rourke Christopher,Mills AndrewORCID

Abstract

Abstract3D printing is known as a fast, inexpensive, reproducible method for producing prototypes but is also fast becoming recognised as a scalable, advanced manufacture process. Two types of lab-scale, 3D printed plastic, fixed-film, flow-through photocatalytic reactors are described, both of which are sinusoidal in shape, and only differ in that one has no baffles, reactor A, whereas the other has, reactor B. Both reactors are lined with a P25 TiO2/polylactic acid (PLA) coating, which, after UVA pre-conditioning, is used to photocatalyse the bleaching of circulating aqueous solutions of either methylene blue, MB, or phenol, PhOH, repeatably, without any obvious loss of activity. The rate of the photocatalysed bleaching of MB exhibited by reactor B shows a much lower dependence upon flow rate than reactor A, due to the greater lateral mixing of the laminar flow streams produced by the baffles. The photonic efficiencies of reactor A for the photocatalysed bleaching of MB and PhOH were determined to be 0.025% and 0.052%, respectively, and the photocatalytic space-time yields (PSTY) to be 0.98 × 10−4 and 1.49 × 10−4 m3 of reaction solution.m−3 reactor volume.day−1.kW−1, respectively. This is the first example of an all plastic, 3D printed photocatalytic reactor and demonstrates the advantages of 3D printing for prototyping. Given the 3D printing is a scalable process, possible potential areas of application are discussed briefly. Graphical abstract

Funder

Engineering and Physical Sciences Research Council

US-Ireland

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3