Pyglotaran: a lego-like Python framework for global and target analysis of time-resolved spectra

Author:

van Stokkum Ivo H. M.ORCID,Weißenborn Jörn,Weigand Sebastian,Snellenburg Joris J.ORCID

Abstract

Abstract The dynamics of molecular systems can be studied with time-resolved spectroscopy combined with model-based analysis. A Python framework for global and target analysis of time-resolved spectra is introduced with the help of three case studies. The first study, concerning broadband absorption of intersystem crossing in 4-thiothymidine, demonstrates the framework's ability to resolve vibrational wavepackets with a time resolution of ≈10 fs using damped oscillations and their associated spectra and phases. Thereby, a parametric description of the “coherent artifact” is crucial. The second study addresses multichromophoric systems composed of two perylene bisimide chromophores. Here, pyglotaran's guidance spectra and lego-like model composition enable the integration of spectral and kinetic properties of the parent chromophores, revealing a loss process, the undesired production of a radical pair, that reduces the light harvesting efficiency. In the third, time-resolved emission case study of whole photosynthetic cells, a megacomplex containing ≈500 chromophores of five different types is described by a combination of the kinetic models for its elements. As direct fitting of the data by theoretical simulation is unfeasible, our global and target analysis methodology provides a useful ‘middle ground’ where the theoretical description and the fit of the experimental data can meet. The pyglotaran framework enables the lego-like creation of kinetic models through its modular design and seamless integration with the rich Python ecosystem, particularly Jupyter notebooks. With extensive documentation and a robust validation framework, pyglotaran ensures accessibility and reliability for researchers, serving as an invaluable tool for understanding complex molecular systems. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3