Toward combined photobiological–photochemical formation of kerosene-type biofuels: which small 1,3-diene photodimerizes most efficiently?

Author:

Vajravel Sindhujaa,Cid Gomes Leandro,Rana Anup,Ottosson HenrikORCID

Abstract

AbstractA transition from fossil- to bio-based hydrocarbon fuels is required to reduce greenhouse gas emissions; yet, traditional biomass cultivation for biofuel production competes with food production and impacts negatively on biodiversity. Recently, we reported a proof-of-principle study of a two-step photobiological–photochemical approach to kerosene biofuels in which a volatile hydrocarbon (isoprene) is produced by photosynthetic cyanobacteria, followed by its photochemical dimerization into C10 hydrocarbons. Both steps can utilize solar irradiation. Here, we report the triplet state (T1)-sensitized photodimerization of a broader set of small 1,3-dienes to identify which structural features lead to rapid photodimerization. Neat 1,3-cyclohexadiene gave the highest yield (93%) after 24 h of irradiation at 365 nm, followed by isoprene (66%). The long triplet lifetime of 1,3-cyclohexadiene, which is two orders of magnitude longer than those of acyclic dienes, is key to its high photoreactivity and stem from its planar T1 state structure. In contrast, while isoprene is conformationally flexible, it has both photochemical and photobiological advantages, as it is the most reactive among the volatile 1,3-dienes and it can be produced by cyanobacteria. Finally, we explored the influence of solvent viscosity, diene concentration, and triplet sensitizer loading on the photodimerization, with a focus on conditions that are amenable when the dienes are produced photobiologically. Our findings should be useful for the further development of the two-step photobiological–photochemical approach to kerosene biofuels. Graphical abstract

Funder

Energimyndigheten

Vetenskapsrådet

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photochemical synthesis in inorganic chemistry;Reviews in Inorganic Chemistry;2024-02-16

2. Photochemical Synthesis of Fine Chemicals;Reference Module in Chemistry, Molecular Sciences and Chemical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3