Ultrafast excited-state dynamics of Luteins in the major light-harvesting complex LHCII

Author:

Pedraza-González LauraORCID,Accomasso DavideORCID,Cupellini LorenzoORCID,Granucci GiovanniORCID,Mennucci BenedettaORCID

Abstract

AbstractCarotenoid pigments are known to present a functional versatility when bound to light-harvesting complexes. This versatility originates from a strong correlation between a complex electronic structure and a flexible geometry that is easily tunable by the surrounding protein environment. Here, we investigated how the different L1 and L2 sites of the major trimeric light-harvesting complex (LHCII) of green plants tune the electronic structure of the two embedded luteins, and how this reflects on their ultrafast dynamics upon excitation. By combining molecular dynamics and quantum mechanics/molecular mechanics calculations, we found that the two luteins feature a different conformation around the second dihedral angle in the lumenal side. The s-cis preference of the lutein in site L2 allows for a more planar geometry of the $$\pi$$ π -conjugated backbone, which results in an increased degree of delocalization and a reduced excitation energy, explaining the experimentally observed red shift. Despite these remarkable differences, according to surface hopping simulations the two luteins present analogous ultrafast dynamics upon excitation: the bright $$S_2$$ S 2 state quickly decays (in $$\sim$$ 50 fs) to the dark intermediate $$S_x$$ S x , eventually ending up in the $$S_1$$ S 1 state. Furthermore, by employing two different theoretical approaches (i.e., Förster theory and an excitonic version of surface hopping), we investigated the experimentally debated energy transfer between the two luteins. With both approaches, no evident energy transfer was observed in the ultrafast timescale. Graphical abstract

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3