Analysis of molecular photomechanical performance using a one-dimensional harmonic model

Author:

Berges Adam J.,Bardeen Christopher J.ORCID

Abstract

AbstractThe photochemical reaction of a molecule leads to a change in the position of its nuclei that can be harnessed to perform mechanical work. Photomechanical materials use this effect to act as light-powered actuators. In this paper, a one-dimensional model based on coupled harmonic potential energy surfaces is developed to describe the photomechanical response of a molecule. This model generates predictions that are qualitatively consistent with standard mechanochemistry models for ground state rate reactions. To analyze the photomechanical process, excited state dynamics like photon absorption and relaxation are included. The model allows us to derive analytical expressions for the work output, blocking force, and absorbed photon-to-work efficiency. The effects of nonadiabatic electronic coupling, unequal frequency potentials, and the cycling efficiency are also analyzed. If the starting state is the stable (lower energy) isomer, it is possible to attain photon-to-work efficiencies up to 55.4%. If initial state is higher in energy, for example a metastable isomer, then one-way efficiencies > 100% are possible due to the release of stored potential energy. Photomechanical materials can be competitive with photovoltaic–piezoelectric combinations in terms of efficiency, but current materials will require substantial improvement before they can approach the theoretical limits. Graphical abstract

Funder

Office of Naval Research Global

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3