Abstract
Abstract
The previously not studied photochemical degradation of sulfamethoxazole (SMX) to the isomer of SMX (ISO) was measured via a polychromatic (Xe) and a monochromatic (Hg) light source and accompanied by quantum chemical DFT calculations. In addition to the $$\mathrm{p}K_\mathrm{a} = \;7.0 \pm 0.1$$
p
K
a
=
7.0
±
0.1
of ISO, tautomer-dependent properties such as the $$K_\mathrm{OW}$$
K
OW
were measured and theoretically confirmed by DFT. The kinetics in solutions below and above the $$\mathrm{p}K_\mathrm{a} = 5.6$$
p
K
a
=
5.6
of SMX were studied for the available and quantifiable products SMX, ISO, 3-amino-5-methylisoxazole (AMI), 2-amino-5-methyloxazole (AMO), and sulfanilic acid (SUA). The quantum yields of the neutral ($$\Phi _\mathrm{N}$$
Φ
N
) and anionic $$\Phi _\mathrm{A}$$
Φ
A
) forms of SMX ($$\Phi _\mathrm{A} = 0.03 \pm 0.001$$
Φ
A
=
0.03
±
0.001
, $$\Phi _\mathrm{N} = 0.15 \pm 0.01$$
Φ
N
=
0.15
±
0.01
) and ISO ($$\Phi _\mathrm{A} = 0.05 \pm 0.01$$
Φ
A
=
0.05
±
0.01
and $$\Phi _\mathrm{N} = 0.06 \pm 0.02$$
Φ
N
=
0.06
±
0.02
) were found to be wavelength-independent. In a competitive reaction to the formation of ISO from SMX, the degradation product TP271 is formed. Various proposed structures for TP271 described in the literature have been studied quantum mechanically and can be excluded for thermodynamic reasons. In real samples in a northern German surface water in summer 2021 mean concentrations of SMX were found in the range of 120 ng/L. In agreement with the pH-dependent yields, concentrations of ISO were low in the range of 8 ng/L.
Graphical abstract
Funder
Environmental Ministry of Lower Saxony
Leuphana Universität Lüneburg
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献