Stress response in Escherichia coli following sublethal phenalene-1-one mediated antimicrobial photodynamic therapy: an RNA-Seq study

Author:

Muehler Denise,Morini Silvia,Geißert Janina,Engesser Christina,Hiller Karl-Anton,Widbiller Matthias,Maisch Tim,Buchalla Wolfgang,Cieplik FabianORCID

Abstract

AbstractSince the molecular mechanisms behind adaptation and the bacterial stress response toward antimicrobial photodynamic therapy (aPDT) are not entirely clear yet, the aim of the present study was to investigate the transcriptomic stress response in Escherichia coli after sublethal treatment with aPDT using RNA sequencing (RNA-Seq). Planktonic cultures of stationary phase E. coli were treated with aPDT using a sublethal dose of the photosensitizer SAPYR. After treatment, RNA was extracted, and RNA-Seq was performed on the Illumina NextSeq 500. Differentially expressed genes were analyzed and validated by qRT-PCR. Furthermore, expression of specific stress response proteins was investigated using Western blot analysis.The analysis of the differential gene expression following pathway enrichment analysis revealed a considerable number of genes and pathways significantly up- or down-regulated in E. coli after sublethal treatment with aPDT. Expression of 1018 genes was up-regulated and of 648 genes was down-regulated after sublethal treatment with aPDT as compared to irradiated controls. Analysis of differentially expressed genes and significantly de-regulated pathways showed regulation of genes involved in oxidative stress response and bacterial membrane damage. In conclusion, the results show a transcriptomic stress response in E. coli upon exposure to aPDT using SAPYR and give an insight into potential molecular mechanisms that may result in development of adaptation. Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3