Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems

Author:

Wang Long,Zhang Lei,He Guowei

Abstract

AbstractA physics-informed neural network (PINN) is a powerful tool for solving differential equations in solid and fluid mechanics. However, it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives. In this paper, we introduce Chien’s composite expansion method into PINNs, and propose a novel architecture for the PINNs, namely, the Chien-PINN (C-PINN) method. This novel PINN method is validated by singularly perturbed differential equations, and successfully solves the well-known thin plate bending problems. In particular, no cumbersome matching conditions are needed for the C-PINN method, compared with the previous studies based on matched asymptotic expansions.

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. NAYFEH, A. H. Perturbation Methods, John Wiley & Sons, New York, 35–37 (2000)

2. ANDERSON, J. D., JR. Fundamentals of Aerodynamics, 6th ed., McGraw-Hill, New York, 997–1012 (2017)

3. ANDERSON, J. D., JR. Hypersonic and High-Temperature Gas Dynamics, 2nd ed., AIAA Education, Reston, 261–374 (2006)

4. WHITE, F. M. Fluid Mechanics, 8th ed., McGraw-Hill Education, New York, 449–520 (1979)

5. CHIEN, W. Z. Large deflection of a circular clamped plate under uniform pressure. Chinese Journal of Physics, 7(2), 102–113 (1947)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3