Author:
Yin Qiang,Cai Juntong,Gong Xue,Ding Qian
Abstract
AbstractThe data-driven methods extract the feature information from data to build system models, which enable estimation and identification of the systems and can be utilized for prognosis and health management (PHM). However, most data-driven models are still black-box models that cannot be interpreted. In this study, we use the neural ordinary differential equations (ODEs), especially the inherent computational relationships of a system added to the loss function calculation, to approximate the governing equations. In addition, a new strategy for identifying the local parameters of the system is investigated, which can be utilized for system parameter identification and damage detection. The numerical and experimental examples presented in the paper demonstrate that the strategy has high accuracy and good local parameter identification. Moreover, the proposed method has the advantage of being interpretable. It can directly approximate the underlying governing dynamics and be a worthwhile strategy for system identification and PHM.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献