Author:
Ramesh K.,Reddy M. G.,Souayeh B.
Abstract
AbstractThis study explores the effects of electro-magneto-hydrodynamics, Hall currents, and convective and slip boundary conditions on the peristaltic propulsion of nanofluids (considered as couple stress nanofluids) through porous symmetric microchannels. The phenomena of energy and mass transfer are considered under thermal radiation and heat source/sink. The governing equations are modeled and non-dimensionalized under appropriate dimensionless quantities. The resulting system is solved numerically with MATHEMATICA (with an in-built function, namely the Runge-Kutta scheme). Graphical results are presented for various fluid flow quantities, such as the velocity, the nanoparticle temperature, the nanoparticle concentration, the skin friction, the nanoparticle heat transfer coefficient, the nanoparticle concentration coefficient, and the trapping phenomena. The results indicate that the nanoparticle heat transfer coefficient is enhanced for the larger values of thermophoresis parameters. Furthermore, an intriguing phenomenon is observed in trapping: the trapped bolus is expanded with an increase in the Hartmann number. However, the bolus size decreases with the increasing values of both the Darcy number and the electroosmotic parameter.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献