A dive into spectral inference networks: improved algorithms for self-supervised learning of continuous spectral representations

Author:

Wu J.,Wang S. F.,Perdikaris P.

Abstract

AbstractWe propose a self-supervising learning framework for finding the dominant eigenfunction-eigenvalue pairs of linear and self-adjoint operators. We represent target eigenfunctions with coordinate-based neural networks and employ the Fourier positional encodings to enable the approximation of high-frequency modes. We formulate a self-supervised training objective for spectral learning and propose a novel regularization mechanism to ensure that the network finds the exact eigenfunctions instead of a space spanned by the eigenfunctions. Furthermore, we investigate the effect of weight normalization as a mechanism to alleviate the risk of recovering linear dependent modes, allowing us to accurately recover a large number of eigenpairs. The effectiveness of our methods is demonstrated across a collection of representative benchmarks including both local and non-local diffusion operators, as well as high-dimensional time-series data from a video sequence. Our results indicate that the present algorithm can outperform competing approaches in terms of both approximation accuracy and computational cost.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preface: machine-learning approaches for computational mechanics;Applied Mathematics and Mechanics;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3