Dynamic analysis and regulation of the flexible pipe conveying fluid with a hard-magnetic soft segment

Author:

Guo Zilong,Ni Qiao,Chen Wei,Dai Huliang,Wang Lin

Abstract

AbstractThe recently developed hard-magnetic soft (HMS) materials can play a significant role in the actuation and control of medical devices, soft robots, flexible electronics, etc. To regulate the mechanical behaviors of the cantilevered pipe conveying fluid, the present work introduces a segment made of the HMS material located somewhere along the pipe length. Based on the absolute node coordinate formulation (ANCF), the governing equations of the pipe conveying fluid with an HMS segment are derived by the generalized Lagrange equation. By solving the derived equations with numerical methods, the static deformation, linear vibration characteristic, and nonlinear dynamic response of the pipe are analyzed. The result of the static deformation of the pipe shows that when the HMS segment is located in the middle of the pipe, the downstream portion of the pipe centerline will keep a straight shape, providing that the pipe is stable with a relatively low flow velocity. Therefore, it is possible to precisely regulate the ejection direction of the fluid flow by changing the magnetic and fluid parameters. It is also found that the intensity and direction of the external magnetic field greatly affect the stability and dynamic response of the pipe with an HMS segment. In most cases, the magnetic actuation increases the critical flow velocity for the flutter instability of the pipe system and suppresses the vibration amplitude of the pipe.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3