Abstract
AbstractThe bending and free vibrational behaviors of functionally graded (FG) cylindrical beams with radially and axially varying material inhomogeneities are investigated. Based on a high-order cylindrical beam model, where the shear deformation and rotary inertia are both considered, the two coupled governing differential motion equations for the deflection and rotation are established. The analytical bending solutions for various boundary conditions are derived. In the vibrational analysis of FG cylindrical beams, the two governing equations are firstly changed to a single equation by means of an auxiliary function, and then the vibration mode is expanded into shifted Chebyshev polynomials. Numerical examples are given to investigate the effects of the material gradient indices on the deflections, the stress distributions, and the eigenfrequencies of the cylindrical beams, respectively. By comparing the obtained numerical results with those obtained by the three-dimensional (3D) elasticity theory and the Timoshenko beam theory, the effectiveness of the present approach is verified.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献