Author:
Zhang Dengbo,Tang Youqi,Liang Ruquan,Song Yuanmei,Chen Liqun
Abstract
AbstractThis paper investigates the transverse 3:1 internal resonance of an axially transporting nonlinear viscoelastic Euler-Bernoulli beam with a two-frequency parametric excitation caused by a speed perturbation. The Kelvin-Voigt model is introduced to describe the viscoelastic characteristics of the axially transporting beam. The governing equation and the associated boundary conditions are obtained by Newton’s second law. The method of multiple scales is utilized to obtain the steady-state responses. The Routh-Hurwitz criterion is used to determine the stabilities and bifurcations of the steady-state responses. The effects of the material viscoelastic coefficient on the dynamics of the transporting beam are studied in detail by a series of numerical demonstrations. Interesting phenomena of the steady-state responses are revealed in the 3:1 internal resonance and two-frequency parametric excitation. The approximate analytical method is validated via a differential quadrature method.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献