Modeling, analysis, and simulation of X-shape quasi-zero-stiffness-roller vibration isolators

Author:

Mao Xiaoye,Yin Mengmeng,Ding Hu,Geng Xiaofeng,Shen Yongjun,Chen Liqun

Abstract

AbstractExisting quasi-zero stiffness (QZS) isolators are reviewed. In terms of their advantages, a novel X-shape QZS isolator combined with the cam-roller-spring mechanism (CRSM) is proposed. Different from the existing X-shape isolators, oblique springs are used to enhance the negative stiffness of the system. Meanwhile, the CRSM is used to eliminate the gravity of the loading mass, while the X-shape structure leaves its static position. The existing QZS isolators are demonstrated and classified according to their nonlinearity mechanisms and classical shapes. It is shown that the oblique spring can realize negative stiffness based on the simplest mechanism. The X-shape has a strong capacity of loading mass, while the CRSM can achieve a designed restoring force at any position. The proposed isolator combines all these advantages together. Based on the harmonic balance method (HBM) and the simulation, the displacement transmissibilities of the proposed isolator, the X-shape isolators just with oblique springs, and the X-shape isolators in the traditional form are studied. The results show that the proposed isolator has the lowest beginning isolation frequency and the smallest maximum displacement transmissibility. However, it still has some disadvantages similar to the existing QZS isolators. This means that its parameters should be designed carefully so as to avoid becoming a bistable system, in which there are two potential wells in the potential energy curve and thus the isolation performance will be worsened.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials

Reference101 articles.

1. CARRELLA, A., BRENNAN, M. J., and WATERS, T. P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301, 678–689 (2007)

2. IKEGAMI, R. E. A. Zero-G ground test simulation methods. Proceedings of the 11th Aerospace Testing Seminar, Institute of Environmental Science, Manhattan Beach (1988)

3. WOODARD, S. E. and HOUSNER, J. M. The nonlinear behavior of a passive zero-spring-rate suspension system. 29th Structures, Structural Dynamics and Materials Conference, Reston (1998)

4. LACOSTE, L. LaCoste and Romberg straight-line gravity meter. Geophysics, 48, 606–610 (1983)

5. IBRAHIM, R. A. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314, 371–452 (2008)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3