Author:
Chen Wei,Hu Ziyang,Dai Huliang,Wang Lin
Abstract
AbstractIn this work, the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model, with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity. Four key parameters, including the flow velocity, the mass ratio, the gravity parameter, and the inclination angle between the pipe length and the gravity direction, are considered to affect the static and dynamic behaviors of the soft pipe. The stability analyses show that, provided that the inclination angle is not equal to π, the soft pipe is stable at a low flow velocity and becomes unstable via flutter once the flow velocity is beyond a critical value. As the inclination angle is equal to π, the pipe experiences, in turn, buckling instability, regaining stability, and flutter instability with the increase in the flow velocity. Interestingly, the stability of the pipe can be either enhanced or weakened by varying the gravity parameter, mainly dependent on the value of the inclination angle. In the nonlinear dynamic analysis, it is demonstrated that the post-flutter amplitude of the soft pipe can be extremely large in the form of limit-cycle oscillations. Besides, the oscillating shapes for various inclination angles are provided to display interesting dynamical behaviors of the inclined soft pipe conveying fluid.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials
Reference33 articles.
1. WANG, Y. J., ZHANG, Q. C., WANG, W., and YANG, T. Z. In-plane dynamics of a fluid-conveying corrugated pipe supported at both ends. Applied Mathematics and Mechanics (English Edition), 40(8), 1119–1134 (2019) https://doi.org/10.1007/s10483-019-2511-6
2. JIANG, T. L., DAI, H. L., ZHOU, K., and WANG, L. Nonplanar post-buckling analysis of simply supported pipes conveying fluid with an axially sliding downstream end. Applied Mathematics and Mechanics (English Edition), 41(1), 15–32 (2020) https://doi.org/10.1007/s10483-020-2557-9
3. CHEN, W., DAI, H. L., and WANG, L. Enhanced stability of two-material panels in supersonic flow: optimization strategy and physical explanation. AIAA Journal, 57, 5553–5565 (2019)
4. PAÏDOUSSIS, M. P. Fluid-Structure Interactions: Slender Structures and Axial Flow, Academic Press, London, 63–75 (1998)
5. BENJAMIN T. B. Dynamics of a system of articulated pipes conveying fluid, I: theory. Proceedings of the Royal Society of London A, 261, 457–486 (1961)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献