Microstructural evolution and mechanical properties of FeCoCrNiCu high entropy alloys: a microstructure-based constitutive model and a molecular dynamics simulation study

Author:

Luo Gangjie,Li Li,Fang Qihong,Li Jia,Tian Yuanyuan,Liu Yong,Liu Bin,Peng Jing,Liaw P. K.

Abstract

AbstractHigh entropy alloys (HEAs) attract remarkable attention due to the excellent mechanical performance. However, the origins of their high strength and toughness compared with those of the traditional alloys are still hardly revealed. Here, using a microstructure-based constitutive model and molecular dynamics (MD) simulation, we investigate the unique mechanical behavior and microstructure evolution of FeCoCrNiCu HEAs during the indentation. Due to the interaction between the dislocation and solution, the high dislocation density in FeCoCrNiCu leads to strong work hardening. Plentiful slip systems are stimulated, leading to the good plasticity of FeCoCrNiCu. The plastic deformation of FeCoCrNiCu is basically affected by the motion of dislocation loops. The prismatic dislocation loops inside FeCoCrNiCu are formed by the dislocations with the Burgers vectors of $${a \over 6}\left[ {\bar 11\bar 2} \right]$$ a 6 [ 1 ¯ 1 2 ¯ ] and $${a \over 6}\left[ {1\bar 12} \right]$$ a 6 [ 1 1 ¯ 2 ] , which interact with each other, and then emit along the 〈111〉 slip direction. In addition, the mechanical properties of FeCoCrNiCu HEA can be predicted by constructing the microstructure-based constitutive model, which is identified according to the evolution of the dislocation density and the stress-strain curve. Strong dislocation strengthening and remarkable lattice distortion strengthening occur in the deformation process of FeCoCrNiCu, and improve the strength. Therefore, the origins of high strength and high toughness in FeCoCrNiCu HEAs come from lattice distortion strengthening and the more activable slip systems compared with Cu. These results accelerate the discovery of HEAs with excellent mechanical properties, and provide a valuable reference for the industrial application of HEAs.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3