Author:
Yan Bo,Yu Ning,Wu Chuanyu
Abstract
AbstractVibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations, especially in aerospace, mechanical, and architectural engineering, etc. Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously, which limits further engineering application, especially in the low-frequency range. In recent twenty years, the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities. One of the most widely studied objects is the “three-spring” configured quasi-zero-stiffness (QZS) vibration isolator, which can realize the negative stiffness and high-static-low-dynamic stiffness (HSLDS) characteristics. The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance. Due to the characteristics of fast response, strong stroke, nonlinearities, easy control, and low-cost, the nonlinear vibration with electromagnetic mechanisms has attracted attention. In this review, we focus on the basic theory, design methodology, nonlinear damping mechanism, and active control of electromagnetic QZS vibration isolators. Furthermore, we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials
Reference91 articles.
1. LIU, C., JING, X., DALEY, S., and LI, F. Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 56–57, 55–80 (2015)
2. DEN HARTOG, J. P. Mechanical Vibrations, Dover Publications, New York (1985)
3. YANG, T., ZHOU, S., FANG, S., QIN, W., and INMAN, D. J. Nonlinear vibration energy harvesting and vibration suppression technologies: designs, analysis, and applications. Applied Physics Reviews, 8, 031317 (2021)
4. ALABUZHEV, P. Vibration Protection and Measuring Systems with Quasi-zero Stiffness, CRC Press, Boca Ration (1989)
5. PLATUS, D. L. Negative-stiffness-mechanism vibration isolation systems, vibration control in microelectronics, optics, and metrology. International Society for Optics and Photonics, 1619, 44–54 (1992)
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献