1. Baldoni, V., Berline, N., De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Vergne, M., & Wu, J. (2014). A user’s guide for LattE integrale v1.7.2.
https://www.math.ucdavis.edu/~latte
2. Casella, G., & Berger, R. L. (2002). Statistical inference. Belmont: Duxbury Press.
3. De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., & Wu, J. (2013). Software for exact integration of polynomials over polyhedra. Computational geometry: Theory and applications, 46, 232–252.
4. De Mouzon, O., Laurent, T., Le Breton, M., & Lepelley, D. (2017). The theoretical Shapley–Shubik probability of an election inversion in a toy symmetric version of the U.S. presidential electoral system. Working Paper.
5. Feix, M. R., Lepelley, D., Merlin, V. R., & Rouet, J.-L. (2004). The probability of conflicts in a U.S. presidential type election. Economic Theory, 23, 227–257.