1. Barvinok, A. (1994). A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Mathematics of Operations Research,19, 769–779.
2. Brandt, F., Geist, C., & Strobel, M. (2016). Analyzing the practical relevance of voting paradoxes via Ehrhart theory, computer simulations and empirical data. In J. Thangarajah et al. (Eds.) Proceedings of the 15th international conference on autonomous agents and multiagent systems (AAMAS 2016).
3. Brandt, F., Hofbauer, J., & Strobel, M. (2019). Exploring the no-show paradox for Condorcet extensions using Ehrhart theory and computer simulations.
http://dss.in.tum.de/files/brandt-research/noshow_study.pdf
. Accessed 15 Oct 2019.
4. Bruns, W., & Ichim, B. (2018). Polytope volumes by descent in the face lattice and applications in social choice. arXiv preprint
arXiv:1807.02835
.
5. Bruns, W., Ichim, B., & Söger, C. (2019). Computations of volumes and Ehrhart series in four candidate elections. Annals of Operations Research, 280, 241–265.