A survey of TIR domain sequence and structure divergence
-
Published:2020-01-30
Issue:3
Volume:72
Page:181-203
-
ISSN:0093-7711
-
Container-title:Immunogenetics
-
language:en
-
Short-container-title:Immunogenetics
Author:
Toshchakov Vladimir Y.ORCID, Neuwald Andrew F.ORCID
Abstract
AbstractToll-interleukin-1R resistance (TIR) domains are ubiquitously present in all forms of cellular life. They are most commonly found in signaling proteins, as units responsible for signal-dependent formation of protein complexes that enable amplification and spatial propagation of the signal. A less common function of TIR domains is their ability to catalyze nicotinamide adenine dinucleotide degradation. This survey analyzes 26,414 TIR domains, automatically classified based on group-specific sequence patterns presumably determining biological function, using a statistical approach termed Bayesian partitioning with pattern selection (BPPS). We examine these groups and patterns in the light of available structures and biochemical analyses. Proteins within each of thirteen eukaryotic groups (10 metazoans and 3 plants) typically appear to perform similar functions, whereas proteins within each prokaryotic group typically exhibit diverse domain architectures, suggesting divergent functions. Groups are often uniquely characterized by structural fold variations associated with group-specific sequence patterns and by herein identified sequence motifs defining TIR domain functional divergence. For example, BPPS identifies, in helices C and D of TIRAP and MyD88 orthologs, conserved surface-exposed residues apparently responsible for specificity of TIR domain interactions. In addition, BPPS clarifies the functional significance of the previously described Box 2 and Box 3 motifs, each of which is a part of a larger, group-specific block of conserved, intramolecularly interacting residues.
Funder
National Institute of Allergy and Infectious Diseases National Institute of General Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Immunology
Reference97 articles.
1. Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Cavanaugh M, Charowhas C, Clark K, Dondoshansky I, Feolo M, Fitzpatrick L, Funk K, Geer LY, Gorelenkov V, Graeff A, Hlavina W, Holmes B, Johnson M, Kattman B, Khotomlianski V, Kimchi A, Kimelman M, Kimura M, Kitts P, Klimke W, Kotliarov A, Krasnov S, Kuznetsov A, Landrum MJ, Landsman D, Lathrop S, Lee JM, Leubsdorf C, Lu Z, Madden TL, Marchler-Bauer A, Malheiro A, Meric P, Karsch-Mizrachi I, Mnev A, Murphy T, Orris R, Ostell J, O’Sullivan C, Palanigobu V, Panchenko AR, Phan L, Pierov B, Pruitt KD, Rodarmer K, Sayers EW, Schneider V, Schoch CL, Schuler GD, Sherry ST, Siyan KS, Oboleva A, Soussov V, Starchenko G, Tatusova TA, Thibaud-Nissen F, Todorov K, Trawick BW, Vakatov D, Ward M, Yaschenko E, Zasypkin A, Zbicz K (2018) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 46:D8–D13 2. Alaidarous M, Ve T, Casey LW, Valkov E, Ericsson DJ, Ullah MO, Schembri MA, Mansell A, Sweet MJ, Kobe B (2014) Mechanism of bacterial interference with TLR4 signaling by Brucella Toll/interleukin-1 receptor domain-containing protein TcpB. J Biol Chem 289:654–668 3. Anderson KV, Jurgens G, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789 4. Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, Dodds PN (2011) Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–211 5. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|