Main product detection with graph networks for fashion

Author:

Yazici Vacit OguzORCID,Yu Longlong,Ramisa Arnau,Herranz Luis,van de Weijer Joost

Abstract

AbstractComputer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused on identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper, we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.

Funder

Agència de Gestió d’Ajuts Universitaris i de Recerca

Ministerio de Ciencia, Innovación y Universidades

Universitat Autònoma de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference34 articles.

1. Adrien (2020) Future of ecommerce: 10 international growth trends. beeketing.com/blog/future-ecommerce-2019 (2020). update

2. Ak KE, Lim JH, Tham JY, Kassim AA (2018) Which shirt for my first date? towards a flexible attribute-based fashion query system. Pattern Recogn Lett 112:212–218

3. Bastan M, Ramisa A, Tek M (2020) T-vse: Transformer-based visual semantic embedding. IEEE Conference on Computer Vision and Pattern Recognition Workshop on Computer Vision for Fashion, Art and Design

4. Bruna J, Zaremba W, Szlam A, LeCun Y (2014) Spectral networks and locally connected networks on graphs. In: Y. Bengio, Y. LeCun (eds.) International Conference on Learning Representations

5. Chen Y, Ma G, Yuan C, Li B, Zhang H, Wang F, Hu W (2020) Graph convolutional network with structure pooling and joint-wise channel attention for action recognition. Pattern Recognition p 107321

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3