ESDNN: A novel ensembled stack deep neural network for mango leaf disease classification and detection
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-16012-6.pdf
Reference56 articles.
1. Abdulridha J, Ehsani R, De Castro A (2016) Detection and differentiation between laurel wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique. Agriculture 6(4):56
2. Al Bashish D, Braik M, Bani-Ahmad S (2011) Detection and classification of leaf diseases using K-means-based segmentation and. Inf Technol J 10(2):267–275
3. Anand R, Veni S, Aravinth J (2016). An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method. In 2016 international conference on recent trends in information technology (ICRTIT) (pp. 1–6). IEEE.
4. Arivazhagan S, Vineth Ligi S (2018) Mango leaf diseases identification using convolutional neural network. Int J Pure Appl Mathem 120(6):11067–11079
5. Arivazhagan S et al (2013) Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric Eng Int CIGR J 15(1):211–217
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Semantic segmentation for plant leaf disease classification and damage detection: A deep learning approach;Smart Agricultural Technology;2024-12
2. A novel deep CNN model with entropy coded sine cosine for corn disease classification;Journal of King Saud University - Computer and Information Sciences;2024-09
3. Classification of infection grade for anthracnose in mango leaves under complex background based on CBAM-DBIRNet;Expert Systems with Applications;2024-09
4. S2AM: a sustainable smart agriculture model for crop protection based on deep learning;Journal of Plant Diseases and Protection;2024-06-16
5. Novel artificial intelligence assisted Landsat-8 imagery analysis for mango orchard detection and area mapping;PLOS ONE;2024-06-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3