Deep features selection through genetic algorithm for cervical pre-cancerous cell classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-022-13736-9.pdf
Reference43 articles.
1. Alnabelsi SH (2013) Cervical cancer diagnostic system using adaptive fuzzy moving k-means algorithm and fuzzy min-max neural network. J Theor Appl Inform Technol 57:1
2. Alyafeai Z, Ghouti L (2020) A fully-automated deep learning pipeline for cervical cancer classification. Expert Syst Appl 141:112951
3. Basak H, Kundu R (2020) Comparative study of maturation profiles of neural cells in different species with the help of computer vision and deep learning. In: International symposium on signal processing and intelligent recognition systems. Springer, pp 352–366
4. Basak H, Kundu R, Agarwal A, Giri S (2020) Single image super-resolution using residual channel attention network. In: 2020 IEEE 15th International conference on industrial and information systems (ICIIS). IEEE, pp 219–224
5. Chattopadhyay S, Basak H (2020) Multi-scale attention u-net (msaunet): a modified u-net architecture for scene segmentation. arXiv:200906911
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CerviLearnNet: Advancing cervical cancer diagnosis with reinforcement learning-enhanced convolutional networks;Heliyon;2024-05
2. Transformative Advances in Cervical Cancer Diagnosis Leveraging Colposcopy Imaging with ViT;2024 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI);2024-04-17
3. MaxCerVixT: A novel lightweight vision transformer-based Approach for precise cervical cancer detection;Knowledge-Based Systems;2024-04
4. FSD-Net: a fuzzy semi-supervised distillation network for noise-resistant classification of medical images;Multimedia Tools and Applications;2024-03-19
5. Enhancing cervical cancer diagnosis with graph convolution network: AI-powered segmentation, feature analysis, and classification for early detection;Multimedia Tools and Applications;2024-02-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3