Abstract
AbstractRadiographic canine hip dysplasia (CHD) diagnosis is crucial for breeding selection and disease management, delaying progression and alleviating the associated pain. Radiography is the primary imaging modality for CHD diagnosis, and visual assessment of radiographic features is sometimes used for accurate diagnosis. Specifically, alterations in femoral neck shape are crucial radiographic signs, with existing literature suggesting that dysplastic hips have a greater femoral neck thickness (FNT). In this study we aimed to develop a three-stage deep learning-based system that can automatically identify and quantify a femoral neck thickness index (FNTi) as a key metric to improve CHD diagnosis. Our system trained a keypoint detection model and a segmentation model to determine landmark and boundary coordinates of the femur and acetabulum, respectively. We then executed a series of mathematical operations to calculate the FNTi. The keypoint detection model achieved a mean absolute error (MAE) of 0.013 during training, while the femur segmentation results achieved a dice score (DS) of 0.978. Our three-stage deep learning-based system achieved an intraclass correlation coefficient of 0.86 (95% confidence interval) and showed no significant differences in paired t-test compared to a specialist (p > 0.05). As far as we know, this is the initial study to thoroughly measure FNTi by applying computer vision and deep learning-based approaches, which can provide reliable support in CHD diagnosis.
Funder
European Regional Development Fund
Universidade de Trás-os-Montes e Alto Douro
Publisher
Springer Science and Business Media LLC