Improved optic disc and cup segmentation in Glaucomatic images using deep learning architecture

Author:

Mangipudi Partha Sarathi,Pandey Hari MohanORCID,Choudhary Ankur

Abstract

AbstractGlaucoma is an ailment causing permanent vision loss but can be prevented through the early detection. Optic disc to cup ratio is one of the key factors for glaucoma diagnosis. But accurate segmentation of disc and cup is still a challenge. To mitigate this challenge, an effective system for optic disc and cup segmentation using deep learning architecture is presented in this paper. Modified Groundtruth is utilized to train the proposed model. It works as fused segmentation marking by multiple experts that helps in improving the performance of the system. Extensive computer simulations are conducted to test the efficiency of the proposed system. For the implementation three standard benchmark datasets such as DRISHTI-GS, DRIONS-DB and RIM-ONE v3 are used. The performance of the proposed system is validated against the state-of-the-art methods. Results indicate an average overlapping score of 96.62%, 96.15% and 98.42% respectively for optic disc segmentation and an average overlapping score of 94.41% is achieved on DRISHTI-GS which is significant for optic cup segmentation.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A deep learning model based glaucoma detection using retinal images;Journal of Intelligent & Fuzzy Systems;2024-04-08

2. Impact of Novel Pre-Processing Techniques on Retinal Images;2024 2nd International Conference on Disruptive Technologies (ICDT);2024-03-15

3. Training U-Net with Proportional Image Division for Retinal Structure Segmentation;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Improved U-Net Performance with Augmentation for Retinal Optic Segmentation;2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS);2023-11-07

5. Glaucoma Classification Using Enhanced Deep Transfer Learning Models with Hybrid ROI Cropped Optic Disc Technique;SN Computer Science;2023-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3