A Binary Grey Wolf Optimization based Hybrid Convolutional Neural Network (BGWOHCNN) framework for hyperspectral image classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-15529-0.pdf
Reference66 articles.
1. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE Journal of Selected topics in Applied Earth Observations and Remote Sensing 7(6):2094–2107
2. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251
3. Chen C, Jiang F, Yang C, Rho S, Shen W, Liu S, Liu Z (2018) Hyperspectral classification based on spectral–spatial convolutional neural networks. Eng Appl Artif Intell 68:165–171
4. Chen Y, Zhu K, Zhu L, He X, Ghamisi P, Benediktsson J A (2019) Automatic design of convolutional neural network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(9):7048–7066
5. Cheng J, Wang P, Li G, Hu Q, Lu H (2018) Recent advances in efficient computation of deep convolutional neural networks. arXiv:1802.00939
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Protecting machine learning systems using blockchain: solutions, challenges and future prospects;Multimedia Tools and Applications;2024-08-08
2. BOISO: Weight optimized U-Net architecture for segmentation of hyperspectral image;2024-04-03
3. Utilizing Hybrid Time Series Clustering Algorithms for Hyper Spectral Image Processing;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29
4. An Improved Hunter-Prey Optimizer-Based DenseNet Model for Classification of Hyper-Spectral Images;AI and IoT-Based Technologies for Precision Medicine;2023-10-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3