DLRFNet: deep learning with random forest network for classification and detection of malaria parasite in blood smear
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-17866-6.pdf
Reference55 articles.
1. World Health Organization (2021) World malaria report. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021. Accessed 25 Sep 2022
2. Kettelhut MM, Chiodini PL, Edwards H, Moody A (2003) External quality assessment schemes raise standards: evidence from the UKNEQAS parasitology subschemes. J Clin Pathol 56(12):927–932. https://doi.org/10.1136/jcp.56.12.927
3. Delahunt C B, Mehanian C, Hu L, McGuire S K, Champlin C R, Horning MP, Thompon CM (2015) Automated microscopy and machine learning for expert-level malaria field diagnosis. In: 2015 IEEE global humanitarian technology conference (GHTC), 393-399. https://doi.org/10.1109/GHTC.2015.7344002
4. Muralidharan V, Dong Y, Pan W D (2016) A comparison of feature selection methods for machine learning based automatic malarial cell recognition in wholeslide images. In 2016 IEEE-EMBS international conference on biomedical and health informatics (BHI), pp 216–219. https://doi.org/10.1109/BHI.2016.7455873
5. Song L, Liu X, Chen S, Liu S, Liu X, Muhammad K, Bhattacharyya S (2022) A deep fuzzy model for diagnosis of COVID-19 from CT images. Appl Soft Comput 122:108883. https://doi.org/10.1016/j.asoc.2022.108883
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Computer-Aided Diagnosis Systems for Automatic Malaria Parasite Detection and Classification: A Systematic Review;Electronics;2024-08-11
2. ConcatNeXt: An automated blood cell classification with a new deep convolutional neural network;Multimedia Tools and Applications;2024-08-02
3. Revolutionizing Malaria Diagnosis: Precision Segmentation of Thin Blood Smears via Advanced U-Net Convolutional Architectures;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3