Prop-oriented world rotation: enabling passive haptic feedback by aligning real and virtual objects in virtual reality

Author:

Wheeler Steven G.ORCID,Hoermann SimonORCID,Lindeman Robert W.ORCID,Ghinea GeorgeORCID,Covaci AlexandraORCID

Abstract

AbstractPassive haptics have long been used to enhance the user’s experience in virtual reality (VR). However, creating props to be used in a virtual environment can be a complicated and lengthy process. Current research looks to create passive haptic props based on the layout of, or objects in, the user’s real environment. However, we identify three key limitations of current research. Firstly, procedural generation introduces many unknown variables into the design process, which complicates applying such techniques to scenarios requiring knowledge of the virtual environment’s layout ahead of time. Furthermore, such techniques limit the size and dimensions of the virtual space to that of the real space. Lastly, current research necessitates pre-scanning or real-time scanning of the user’s real environment, often requiring specialist equipment and expertise, thus limiting its generalisability. This research proposes PropOrientedWorldRotation, a technique that attempts to answer the aforementioned limitations and simplify the process of adding haptic feedback to VR applications. We implemented this technique in a demonstration game and give an overview of the steps taken to apply the technique in a real context. We analysed the demonstration system’s performance and conducted an initial user evaluation in three different physical environments. While our stress test of the system’s performance highlights the necessity for certain optimisations in complex environments, our initial user feedback suggests that users experienced a stronger sense of presence and feelings of safety in our passive haptics-enhanced environment. Hence, we conclude that our proposal has the potential to enhance experiences in VR with haptic feedback.

Funder

University of Canterbury

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3