Connecting national flags – a deep learning approach

Author:

Kalampokas TheofanisORCID,Mentizis Dimitrios,Vrochidou EleniORCID,Papakostas George A.ORCID

Abstract

AbstractNational flags are the most recognizable symbols of the identity of a country. Similarities between flags may be observed due to cultural, historical, or ethical connections between nations, because they may be originated from the same group of people, or due to unrelated sharing of common symbols and colors. Although the fact that similar flags exist is indisputable, this has never been quantified. Quantifying flags’ similarities could provide a useful body of knowledge for vexillologists and historians. To this end, this work aims to develop a supporting tool for the scientific study of nations’ history and symbolisms, through the quantification of the varying degrees of similarity between their flags, by considering three initially stated hypotheses and by using a novel feature inclusion (FI) measure. The proposed FI measure aims to objectively quantify the overall similarity between flags based on optical multi-scaled features extracted from flag images. State-of-the-art deep learning models built for other applications tested their capability for the first time for the problem under study by using transfer learning, towards calculating the FI measure. More specifically, FI was quantified by six deep learning models: Yolo (V4 and V5), SSD, RetinaNet, Fast R-CNN, FCOS and CornerNet. Flags’ images dataset included flags of 195 nations officially recognized by the United Nations. Experimental results reported maximum feature inclusion between flags of up to 99%. The extracted degrees of similarity were subsequently justified with the help of the Vexillology scientific domain, to support research findings and to raise questions for further investigation. Experimental results reveal that the proposed approach and FI measure are reliable and able to serve as a supporting tool to social sciences for knowledge extraction and quantification.

Funder

International Hellenic University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3