Deep labeller: automatic bounding box generation for synthetic violence detection datasets

Author:

Nadeem Muhammad ShahrozORCID,Kurugollu Fatih,Saravi Sara,Atlam Hany F.,Franqueira Virginia N. L.

Abstract

AbstractManually labelling datasets for training violence detection systems is time-consuming, expensive, and labor-intensive. Mind wandering, boredom, and short attention span can also cause labelling errors. Moreover, collecting and distributing sensitive images containing violence has ethical implications. Automation is the future for labelling sensitive image datasets. Deep labeller is a two-stage Deep Learning (DL) method that uses pre-trained DL object detection methods on MS-COCO for automatic labelling. The Deep Labeller method labels violent and nonviolent images in WVD and USI. In stage 1, WVD generates weak labels using synthetic images. In stage 2, the Deep labeller method is retrained on weak labels. USI dataset is used to test our method on real-world violence. Deep labeller generated weak and strong labels with an IoU of 0.80036 in stage 1 and 0.95 in stage 2 on the WVD. Automatically generated labels. To test our method’s generalisation power, violent and nonviolent image labels on USI dataset had a mean IoU of 0.7450.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weapon Violence Dataset 2.0: A synthetic dataset for violence detection;Data in Brief;2024-06

2. Violence Detection: A Multi-Model Approach Towards Automated Video Surveillance and Public Safety;2024 International Conference on Advances in Computing, Communication, Electrical, and Smart Systems (iCACCESS);2024-03-08

3. Efficient Violence Recognition System using Spatio-Temporal Shift Multi-Scale Attention Model;2023 IEEE 20th India Council International Conference (INDICON);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3